
NELKINDA SOFTWARE CRAFT
� TRAINING

Test-Driven Development in C#
� Duration: 3 Days
� Available Languages: English German

Audience
Software Crafters, Software Developers, Software Testers, XP Coaches.

Precondition
Solid knowledge of the C# programming language and its build tools like
MSBuild or Cake.

Goals
Learn the benefits, mechanics, and nuts and bolts of developing software
using Test-Driven Development.

Contents

Test-Driven Development (TDD) is a software development practice from Extreme
Programming (XP) and Software Craft. TDD increases code coverage, leads to fast
tests, and supports continuous refactoring and continuous design improvement.
Some benefits of TDD include developing faster with fewer errors, reducing debug
time, lean development, better design, quick feedback, and eliminating fear for
continuous refactoring. Last but not least, TDD drives decoupled and thus better
quality software architecture.

• Software Architecture Fundamentals for TDD
What is "agile"? What is agility?
The Two Values of Software
The ATP-Trinity of project code
The Importance Priorities: Automation > Test > Production
The five major design smells
Cohesion and Coupling
What is "testable" and how is it related to maintainability / Clean Code?
Test Automation Pyramid
TDD in the context of Agile and XP
The 4 Rules of Simple Design

• Unit Testing fundamentals
The job of and work split between test frameworks
Anatomy of xUnit frameworks
NUnit, xUnit, MSTest
The Single-Assert Rule

• TDD fundamentals
The Three Laws of Test-Driven Development

1/4
https://nelkinda.com/training/TDD-C%23

© Copyright 2015-2024 Nelkinda Software Craft Private Limited. All rights reserved.

https://nelkinda.com/
https://nelkinda.com/training/
https://nelkinda.com/training/TDD-C%23

NELKINDA SOFTWARE CRAFT
� TRAINING

The Red-Green-Refactor Cycle
The FAIR/FIRST principles
How to Start
ZOMBIES - Zero One Many Boundaries Interfaces Exceptions Simplicity

• Test Doubles (Stubbing and Mocking)
The Ontology of Test Doubles
The Two Schools of TDD: Stateism ("Chicago School") vs Mockism ("London

School")
Outside-in vs Inside-out
Mocking, Coupling, and Isolation
Working with Moq
Avoiding tautological tests
The "Untestables" (Singletons and side-effects)

• BDD - Behavior Driven Development
3 Amigos
Specification by Example
Gherkin
SpecFlow
Unit Testing vs Acceptance Testing
Given-When-Then vs 4 A's

• Intermediate TDD
TPP - Transformation Priority Premise
Transformation vs Refactoring
Starting Points
The Sequence for Tests
TCR - test && commit || revert
NHamcrest Matchers

• ATDD - Acceptance Test-Driven Development
Test Automation Pyramid
Using BDD on different layers
Outlook: Acceptance Test Step Definitions with Selenium and Appium
Integration Test Step Definitions with HTTP client
Unit Test Step Definitions

• TDD for Legacy Code
Legacy Code Change Matrix
Refactoring
Characterization Testing

• TDD and Dependency Injection Frameworks
.Net Core
MSTest, NUnit, xUnit
SpecFlow

• TDD Anti-Patterns
The Liar
The Loudmouth
Excessive Setup
The Secret Catcher
The Giant
The Hidden Dependency
The Mockery

2/4
https://nelkinda.com/training/TDD-C%23

© Copyright 2015-2024 Nelkinda Software Craft Private Limited. All rights reserved.

https://nelkinda.com/
https://nelkinda.com/training/
https://nelkinda.com/training/TDD-C%23

NELKINDA SOFTWARE CRAFT
� TRAINING

The Stranger
Generous Leftovers
Success Against All Odds
Local Hero
The Slow Poke
The Sequencer
The Enumerator
The Greedy Catcher
The Dodger
The Nitpicker
The Inspector
The OS evangelist
The Free Ride
The Peeping Tom

• Outlook
Test Architecture
Working Effectively with Legacy Code
How to migrate Test-Last to Test-First
Characterization Testing
TDD and the SOLID principles
TDD and Agile Development (Scrum, XP, Kanban, Lean)
TDD and Software Craftsmanship
TDD and Pair Programming - Ping Pong
TDD and Mob/Ensemble Programming
TDD and Continuous Integration / Trunk-Based Development
TDD and Continuous Delivery / DevOps
What Shifting Testing Left means
Property-based Testing

Examples and exercises range from simple problem statements like a leap year
function to test-driving legacy code with the ExpenseReport legacy code refactoring
kata.

The course uses .NET 6.0.9, xUnit 2.4.2, and NUnit 3.13.3. The recommended IDE is Rider;
VSCode is supported as well. The course will be probably be upgraded to .NET 7.0 in
November 2022 with the expected release of .NET 7.0.

The course language is C#. Nelkinda also offers this course in other languages, for
example, C, C++, Java, JavaScript, Kotlin, Python, Swift, and TypeScript.
Event Type

This is a 3 full days open (anyone can register) instructor-led classroom training about
Test-Driven Development in C#. The number of seats is limited to ensure the best
quality training for the participants. The course fee includes snacks and lunch.
Trainer

Your trainer for this event is Christian Hujer.

3/4
https://nelkinda.com/training/TDD-C%23

© Copyright 2015-2024 Nelkinda Software Craft Private Limited. All rights reserved.

https://nelkinda.com/
https://nelkinda.com/training/
https://nelkinda.com/training/TDD-C%23

NELKINDA SOFTWARE CRAFT
� TRAINING

Christian Hujer has 21 years of experience in TDD and 25 years of experience in Java.
He's been training developers and teams for organizations like BNP Paribas, Elsevier,
Ford, Giesecke & Devrient, Nokia, SUN Microsystems, UBS, Volkswagen, and many others.

Booking
Contact Siddhesh Nikude, +91-95-52572354, training@nelkinda.com

4/4
https://nelkinda.com/training/TDD-C%23

© Copyright 2015-2024 Nelkinda Software Craft Private Limited. All rights reserved.

https://nelkinda.com/
https://nelkinda.com/training/
https://nelkinda.com/training/TDD-C%23

